organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(1a, 2\beta, 3a, 7a, 11a, 13\beta) - 1, 3, 11$ -Triacetoxy-2,13-bis(benzyloxy)-7-hydroxy-21methyl-N,19-secohetisan-19-al

Shu-Hua Li,^a Tie-Ying Zi^b and Xiong-Qing Wang^c*

^aDepartment of Chemistry and Life Sciences, Leshan Teachers College, Leshan 614004, People's Republic of China, ^bThe First Affiliated Hospital, Chengdu Medical College, Xindu 610500, People's Republic of China, and ^cMianyang Normal University, Mianyang 621000, People's Republic of China Correspondence e-mail: wangxq193@126.com

Received 23 April 2008; accepted 24 June 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.007 Å; R factor = 0.048; wR factor = 0.130; data-to-parameter ratio = 7.4.

The title compound (delgradine), C₄₁H₄₃NO₁₂, is a hetisinetype C₂₀-diterpenoid alkaloid, isolated from the roots of Aconitum carmichaeli Debx. In the crystal structure, the molecule assumes an U-shaped conformation, the terminal benzene rings being approximately parallel and partially overlapped with each other. The molecule contains eight alicyclic and heterocyclic rings. Cyclohexane rings A and Badopt similar chair conformations; the six-membered rings C, D and E form a bicyclo [2.2.2] octane system with a boat conformation for each six-membered ring, the six-membered heterocyclic ring F has a screw-boat conformation and both of the five-membered rings G and H have envelope conformations. The crystal structure contains intermolecular $O-H \cdots O$ hydrogen bonding.

Related literature

For related literature, see: Deng et al. (1992).

Experimental

Crystal data

-	
C ₄₁ H ₄₃ NO ₁₂	V = 3784 (2) Å ³
$M_r = 741.76$	Z = 4
Monoclinic, C2	Mo $K\alpha$ radiation
a = 19.892 (4) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 11.307 (5) Å	T = 291 (2) K
c = 16.825 (5) Å	$0.42 \times 0.40 \times 0.36 \text{ mm}$
$\beta = 91.07 \ (2)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4309 measured reflections 3705 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	1 restraint
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
3705 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
498 parameters	

2282 reflections with $I > 2\sigma(I)$

every 300 reflections

intensity decay: 2.6%

 $R_{\rm int} = 0.018$ 3 standard reflections

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D - H \cdots A$ $O7 - H7A \cdots O19^{i}$ 0.82 1.94 2.743 (5) 167

Symmetry code: (i) -x, y, -z + 2.

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by Mianyang Normal University Scientific Research Fund (MY2006003) and a grant from Sichuan Provincial Department of Education, China (2005 A165).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2424).

References

Deng, Y. P., Chen, D. H. & Sun, W. L. (1992). Acta Chim. Sinica, 50, 822-826. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Crvst. 22, 384-387.

Gabe, E. J. & White, P. S. (1993). American Crystallographic Association meeting, Pittsburgh. Abstract PA 104.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o1394 [doi:10.1107/81600536808019223]

(1*a*,2*β*,3*a*,7*a*,11*a*,13*β*)-1,3,11-Triacetoxy-2,13-bis(benzyloxy)-7-hydroxy-21-methyl-*N*,19-secohetisan-19-al

S.-H. Li, T.-Y. Zi and X.-Q. Wang

Comment

The diterpenoid alkaloid, delgradine, was previously isolated from *Delphinium grandiflorum L*. (Deng *et al.*, 1992), and its structure was established from the spectroscopic data. In our recent investigation, it was isolated from *Aconitum carmichaeli Debx*, and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The molecule of the title compound assumes an U-shaped conformation, with terminal benzene rings being approximately parallel and partially overlapped to each other. The molecule contains eight alicyclic and heterocyclic rings. Cyclohexane rings A (C1/C2/C3/C4/C5/C10) and B (C5/C6/C7/C8/C9/C10) adopt chair conformations; six-membered rings C (C8/C9/C11/C12/C13/C14), D (C8/C9/C11/C12/C15/C16) and E (C8/C12/C13/C14/C15/C16) form a bicycle [2.2.2] octane system with the boat conformation for each six-membered ring C, D and E; the six-membered heterocyclic ring F (C6/C7/C8/C14/C20/N1) adopts a screw-boat conformation; while the five-membered rings G (C5/C6/C10/C20/N1) and H (C8/C9/C10/C14/C20) adopt the same envelope conformation.

The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and aldehyde O atom (Table 1).

Experimental

The title compound was isolated from the roots of *Aconitum carmichaeli Debx* and crystals suitable for X-ray structure analysis were obtained by slow evaporation from an acetone solution at room temperature.

Refinement

H atoms were located geometrically with C—H distance of 0.93–0.98 Å, and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. The absolute configuration has not been determined for the structure.

Figures

Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.

(1α,2β,3α,7α,11α,13β)-1,3,11-Triacetoxy-2,13-bis(benzyloxy)-7- hydroxy-21-methyl-N,19-secohetisan-19-al

Crystal data	
C ₄₁ H ₄₃ NO ₁₂	$F_{000} = 1568$
$M_r = 741.76$	$D_{\rm x} = 1.302 {\rm Mg m}^{-3}$
Monoclinic, C2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2y	Cell parameters from 55 reflections
a = 19.892 (4) Å	$\theta = 4.7 - 7.6^{\circ}$
b = 11.307 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 16.825 (5) Å	T = 291 (2) K
$\beta = 91.07 \ (2)^{\circ}$	Block, colourless
V = 3784 (2) Å ³	$0.42\times0.40\times0.36~mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.018$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.2^{\circ}$
T = 291(2) K	$h = -6 \rightarrow 24$
$\omega/2\theta$ scans	$k = -13 \rightarrow 0$
Absorption correction: none	$l = -20 \rightarrow 20$
4309 measured reflections	3 standard reflections
3705 independent reflections	every 300 reflections
2282 reflections with $I > 2\sigma(I)$	intensity decay: 2.6%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0734P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
3705 reflections	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
498 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0010 (3) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.10745 (17)	0.5052 (3)	0.8921 (2)	0.0427 (9)
01A	0.21024 (15)	0.8335 (3)	0.78232 (16)	0.0456 (8)
O1B	0.26263 (18)	0.8288 (3)	0.6655 (2)	0.0639 (10)
O2A	0.12403 (14)	0.5813 (3)	0.69392 (16)	0.0449 (7)
O2B	0.1133 (2)	0.6310 (4)	0.5646 (2)	0.0872 (13)
O3A	0.01724 (15)	0.7482 (3)	0.69724 (18)	0.0593 (9)
O3B	0.0463 (4)	0.9136 (5)	0.6367 (3)	0.128 (2)
07	0.14601 (16)	0.5003 (3)	1.06651 (19)	0.0573 (9)
H7A	0.1100	0.5065	1.0891	0.069*
O11A	0.33185 (14)	0.7260 (3)	0.82500 (17)	0.0465 (8)
O11B	0.43602 (17)	0.7575 (4)	0.8731 (2)	0.0794 (12)
O13A	0.30189 (15)	0.4752 (3)	0.80593 (17)	0.0472 (8)
O13B	0.2702 (2)	0.2863 (3)	0.7952 (2)	0.0871 (13)
019	-0.03068 (16)	0.5601 (4)	0.8561 (2)	0.0716 (11)
C1	0.1948 (2)	0.7076 (4)	0.7724 (2)	0.0378 (10)
H1	0.2332	0.6668	0.7492	0.045*
C2	0.1350 (2)	0.7038 (4)	0.7150 (3)	0.0437 (11)
H2	0.1462	0.7480	0.6670	0.052*
C3	0.0741 (2)	0.7595 (4)	0.7516 (2)	0.0463 (11)
H3	0.0834	0.8440	0.7586	0.056*
C4	0.0528 (2)	0.7102 (4)	0.8317 (3)	0.0471 (11)
C5	0.1138 (2)	0.7027 (4)	0.8903 (2)	0.0399 (10)
Н5	0.1200	0.7777	0.9187	0.048*
C6	0.1016 (2)	0.6019 (5)	0.9487 (3)	0.0482 (12)
H6	0.0562	0.6059	0.9702	0.058*
C7	0.1547 (2)	0.5984 (4)	1.0151 (2)	0.0439 (11)
H7	0.1519	0.6714	1.0462	0.053*
C8	0.2248 (2)	0.5890 (4)	0.9808 (2)	0.0383 (10)
С9	0.2367 (2)	0.6898 (4)	0.9200 (2)	0.0374 (10)
H9	0.2253	0.7655	0.9447	0.045*
C10	0.1821 (2)	0.6595 (4)	0.8551 (2)	0.0361 (10)
C11	0.3135 (2)	0.6881 (4)	0.9037 (3)	0.0412 (11)
H11	0.3342	0.7447	0.9409	0.049*

C12	0.3439 (2)	0.5665 (4)	0.9241 (3)	0.0462 (12)
H12	0.3893	0.5599	0.9028	0.055*
C13	0.2999 (2)	0.4682 (4)	0.8923 (3)	0.0449 (11)
H13	0.3182	0.3919	0.9099	0.054*
C14	0.2277 (2)	0.4820 (4)	0.9232 (2)	0.0393 (10)
H14	0.2133	0.4095	0.9499	0.047*
C15	0.2779 (2)	0.5792 (5)	1.0474 (2)	0.0485 (12)
H15A	0.2780	0.6510	1.0790	0.058*
H15B	0.2670	0.5135	1.0819	0.058*
C16	0.3465 (2)	0.5605 (4)	1.0133 (3)	0.0489 (12)
C17	0.4016 (3)	0.5488 (7)	1.0559 (4)	0.086 (2)
H17A	0.4429	0.5437	1.0311	0.103*
H17B	0.3995	0.5457	1.1110	0.103*
C18	-0.0002 (2)	0.7940 (5)	0.8672 (3)	0.0626 (14)
H18A	-0.0377	0.8012	0.8307	0.075*
H18B	0.0195	0.8704	0.8761	0.075*
H18C	-0.0153	0.7623	0.9167	0.075*
C19	0.0189 (2)	0.5891 (5)	0.8198 (3)	0.0542 (12)
H19	0.0370	0.5363	0.7836	0.065*
C20	0.1745 (2)	0.5210 (4)	0.8599 (3)	0.0402 (10)
H20	0.1800	0.4818	0.8085	0.048*
C21	0.0857 (3)	0.3858 (5)	0.9132 (3)	0.0620 (14)
H21A	0.0379	0.3856	0.9208	0.074*
H21B	0.1082	0.3616	0.9615	0.074*
H21C	0.0966	0.3321	0.8712	0.074*
C22	0.2639 (4)	1.0078 (5)	0.7406 (4)	0.092 (2)
H22A	0.2896	1.0390	0.6977	0.110*
H22B	0.2899	1.0123	0.7891	0.110*
H22C	0.2234	1.0531	0.7459	0.110*
C23	0.2465 (3)	0.8829 (5)	0.7239 (3)	0.0537 (13)
C24	0.0951 (3)	0.3908 (6)	0.5239 (4)	0.0798 (18)
H24	0.0961	0.4448	0.4823	0.096*
C25	0.0857 (4)	0.2712 (8)	0.5086 (5)	0.105 (2)
H25	0.0815	0.2450	0.4564	0.126*
C26	0.0826 (3)	0.1918 (7)	0.5692 (5)	0.097 (2)
H26	0.0760	0.1120	0.5580	0.116*
C27	0.0890 (3)	0.2280 (6)	0.6458 (4)	0.0789 (18)
H27	0.0867	0.1735	0.6870	0.095*
C28	0.0991 (3)	0.3476 (5)	0.6623 (4)	0.0633 (15)
H28	0.1032	0.3727	0.7148	0.076*
C29	0.1030 (2)	0.4288 (5)	0.6018 (3)	0.0578 (14)
C30	0.1133 (2)	0.5557 (5)	0.6152 (3)	0.0539 (13)
C31	-0.0498 (3)	0.8056 (9)	0.5893 (4)	0.123 (3)
H31A	-0.0428	0.7302	0.5647	0.148*
H31B	-0.0546	0.8653	0.5490	0.148*
H31C	-0.0898	0.8028	0.6203	0.148*
C32	0.0092 (3)	0.8346 (8)	0.6421 (4)	0.0823 (19)
C33	0.4142 (3)	0.7951 (8)	0.7368 (4)	0.098 (2)
H33A	0.4389	0.7336	0.7111	0.117*

H33B	0.4410	0.8656	0.7394	0.117*
H33C	0.3735	0.8108	0.7071	0.117*
C34	0.3974 (3)	0.7571 (5)	0.8182 (3)	0.0577 (13)
C35	0.2721 (3)	0.3096 (6)	0.6249 (3)	0.0702 (16)
H35	0.2602	0.2358	0.6447	0.084*
C36	0.2733 (3)	0.3267 (7)	0.5437 (4)	0.0825 (19)
H36	0.2634	0.2647	0.5091	0.099*
C37	0.2888 (3)	0.4340 (8)	0.5155 (4)	0.0827 (19)
H37	0.2901	0.4461	0.4608	0.099*
C38	0.3029 (3)	0.5266 (6)	0.5663 (3)	0.0768 (17)
H38	0.3121	0.6013	0.5462	0.092*
C39	0.3033 (3)	0.5082 (5)	0.6456 (3)	0.0607 (14)
H39	0.3140	0.5705	0.6796	0.073*
C40	0.2881 (2)	0.3992 (5)	0.6772 (3)	0.0494 (12)
C41	0.2861 (3)	0.3773 (5)	0.7645 (3)	0.0528 (12)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.039 (2)	0.042 (2)	0.047 (2)	-0.0067 (17)	0.0019 (17)	0.0073 (19)
O1A	0.0632 (19)	0.0374 (17)	0.0361 (16)	-0.0078 (16)	-0.0019 (15)	0.0036 (15)
O1B	0.080 (2)	0.070 (2)	0.0413 (19)	-0.020 (2)	0.0041 (17)	0.0045 (19)
O2A	0.0510 (17)	0.0457 (19)	0.0379 (17)	-0.0074 (15)	-0.0017 (13)	0.0004 (15)
O2B	0.142 (4)	0.078 (3)	0.042 (2)	-0.011 (3)	-0.015 (2)	0.004 (2)
O3A	0.0490 (18)	0.080 (3)	0.0489 (19)	0.0077 (18)	-0.0111 (15)	0.006 (2)
O3B	0.168 (6)	0.104 (4)	0.111 (4)	0.003 (4)	-0.041 (4)	0.053 (4)
07	0.0489 (19)	0.074 (2)	0.049 (2)	0.0051 (18)	0.0111 (15)	0.0233 (18)
011A	0.0421 (16)	0.0542 (19)	0.0433 (18)	-0.0109 (15)	0.0012 (14)	0.0066 (15)
O11B	0.051 (2)	0.104 (3)	0.083 (3)	-0.031 (2)	-0.009 (2)	0.005 (3)
O13A	0.0613 (19)	0.0440 (19)	0.0367 (17)	-0.0014 (16)	0.0077 (14)	-0.0043 (15)
O13B	0.156 (4)	0.042 (2)	0.064 (2)	-0.020 (3)	0.016 (2)	-0.001 (2)
O19	0.0430 (18)	0.092 (3)	0.080 (2)	-0.0066 (19)	0.0115 (18)	0.017 (2)
C1	0.043 (2)	0.038 (2)	0.032 (2)	-0.001 (2)	0.0035 (19)	0.000 (2)
C2	0.047 (2)	0.041 (3)	0.042 (2)	-0.004 (2)	0.000 (2)	0.006 (2)
C3	0.045 (2)	0.046 (3)	0.048 (3)	0.008 (2)	-0.003 (2)	0.007 (2)
C4	0.042 (2)	0.048 (3)	0.051 (3)	0.006 (2)	0.002 (2)	0.001 (2)
C5	0.044 (2)	0.041 (2)	0.035 (2)	-0.003 (2)	0.002 (2)	0.005 (2)
C6	0.034 (2)	0.066 (3)	0.045 (3)	0.002 (2)	0.007 (2)	0.006 (3)
C7	0.052 (3)	0.047 (3)	0.033 (2)	0.006 (2)	0.003 (2)	0.008 (2)
C8	0.042 (2)	0.042 (2)	0.031 (2)	0.004 (2)	0.0007 (18)	0.001 (2)
C9	0.041 (2)	0.037 (2)	0.034 (2)	-0.002 (2)	0.0027 (19)	-0.005 (2)
C10	0.039 (2)	0.035 (2)	0.035 (2)	-0.0017 (18)	0.0003 (19)	-0.0051 (19)
C11	0.047 (2)	0.045 (3)	0.031 (2)	-0.008 (2)	-0.001 (2)	0.001 (2)
C12	0.041 (2)	0.056 (3)	0.042 (3)	0.000 (2)	0.004 (2)	0.001 (2)
C13	0.053 (3)	0.043 (3)	0.039 (3)	0.004 (2)	0.002 (2)	0.002 (2)
C14	0.044 (2)	0.038 (2)	0.036 (2)	-0.003 (2)	0.0031 (19)	0.004 (2)
C15	0.050 (3)	0.059 (3)	0.036 (2)	-0.001 (3)	-0.002 (2)	0.000 (3)
C16	0.052 (3)	0.055 (3)	0.039 (2)	0.002 (2)	-0.002 (2)	0.006 (2)

C17	0.057 (3)	0.138 (6)	0.063 (4)	0.006 (4)	-0.008 (3)	0.020 (4)
C18	0.053 (3)	0.079 (4)	0.056 (3)	0.017 (3)	0.002 (2)	-0.002 (3)
C19	0.042 (3)	0.067 (3)	0.054 (3)	0.000 (3)	0.002 (2)	0.004 (3)
C20	0.049 (3)	0.038 (3)	0.034 (2)	-0.005 (2)	-0.002 (2)	0.006 (2)
C21	0.061 (3)	0.056 (3)	0.069 (3)	-0.022 (3)	-0.007 (3)	0.019 (3)
C22	0.156 (7)	0.053 (4)	0.066 (4)	-0.032 (4)	0.017 (4)	0.003 (3)
C23	0.077 (3)	0.048 (3)	0.036 (3)	-0.018 (3)	-0.001 (2)	0.010 (3)
C24	0.089 (4)	0.085 (5)	0.065 (4)	-0.008 (4)	-0.007 (3)	-0.018 (3)
C25	0.129 (6)	0.095 (6)	0.091 (5)	-0.015 (5)	-0.009 (4)	-0.045 (5)
C26	0.096 (5)	0.067 (5)	0.128 (7)	-0.007 (4)	0.012 (5)	-0.040 (5)
C27	0.071 (4)	0.062 (4)	0.103 (5)	-0.005 (3)	0.012 (3)	-0.018 (4)
C28	0.061 (3)	0.062 (4)	0.067 (4)	-0.005 (3)	0.002 (3)	-0.009 (3)
C29	0.048 (3)	0.066 (4)	0.059 (3)	-0.005 (3)	-0.003 (2)	-0.011 (3)
C30	0.054 (3)	0.063 (4)	0.044 (3)	-0.006 (3)	-0.006 (2)	-0.002 (3)
C31	0.077 (4)	0.222 (10)	0.070 (4)	0.043 (6)	-0.015 (3)	0.011 (6)
C32	0.085 (4)	0.100 (5)	0.061 (4)	0.027 (4)	-0.014 (3)	0.013 (4)
C33	0.066 (4)	0.144 (7)	0.085 (4)	-0.027 (4)	0.021 (3)	0.029 (5)
C34	0.051 (3)	0.058 (3)	0.064 (3)	-0.021 (3)	0.009 (3)	0.005 (3)
C35	0.073 (4)	0.067 (4)	0.071 (4)	-0.008 (3)	0.012 (3)	-0.020 (3)
C36	0.083 (4)	0.100 (6)	0.064 (4)	-0.010 (4)	-0.003 (3)	-0.033 (4)
C37	0.083 (4)	0.116 (6)	0.049 (3)	0.009 (4)	-0.007 (3)	-0.010 (4)
C38	0.091 (4)	0.085 (5)	0.055 (4)	0.002 (4)	0.009 (3)	0.016 (4)
C39	0.070 (3)	0.064 (4)	0.048 (3)	0.007 (3)	0.010 (3)	-0.004 (3)
C40	0.054 (3)	0.052 (3)	0.042 (3)	-0.001 (2)	0.009 (2)	-0.009 (2)
C41	0.063 (3)	0.043 (3)	0.053 (3)	-0.002 (3)	0.014 (2)	-0.007 (3)

Geometric parameters (Å, °)

N1—C6	1.456 (6)	C14—C20	1.551 (6)
N1-C20	1.459 (5)	C14—H14	0.9800
N1-C21	1.464 (6)	C15—C16	1.506 (6)
O1A—C23	1.352 (5)	C15—H15A	0.9700
01AC1	1.464 (5)	C15—H15B	0.9700
O1B—C23	1.206 (6)	C16—C17	1.304 (7)
O2A—C30	1.369 (5)	C17—H17A	0.9300
O2A—C2	1.445 (6)	C17—H17B	0.9300
O2B—C30	1.203 (6)	C18—H18A	0.9600
O3A—C32	1.354 (8)	C18—H18B	0.9600
O3A—C3	1.447 (5)	C18—H18C	0.9600
O3B—C32	1.165 (9)	C19—H19	0.9300
O7—C7	1.420 (5)	C20—H20	0.9800
O7—H7A	0.8200	C21—H21A	0.9600
O11A—C34	1.358 (5)	C21—H21B	0.9600
011A—C11	1.445 (5)	C21—H21C	0.9600
O11B—C34	1.190 (6)	C22—C23	1.480 (8)
O13A—C41	1.342 (6)	C22—H22A	0.9600
O13A—C13	1.457 (5)	C22—H22B	0.9600
O13B—C41	1.197 (6)	C22—H22C	0.9600
O19—C19	1.216 (5)	C24—C29	1.385 (8)

C1—C10	1.519 (6)	C24—C25	1.389 (11)
C1—C2	1.520 (6)	C24—H24	0.9300
C1—H1	0.9800	C25—C26	1.360 (11)
C2—C3	1.506 (6)	С25—Н25	0.9300
С2—Н2	0.9800	C26—C27	1.356 (9)
C3—C4	1.525 (6)	С26—Н26	0.9300
С3—Н3	0.9800	C27—C28	1.394 (8)
C4—C19	1.538 (8)	С27—Н27	0.9300
C4—C18	1.545 (7)	C28—C29	1.374 (8)
C4—C5	1.552 (6)	C28—H28	0.9300
C5—C6	1.528 (7)	C29—C30	1.467 (8)
C5—C10	1.570 (6)	C31—C32	1.494 (9)
С5—Н5	0.9800	C31—H31A	0.9600
C6—C7	1.524 (6)	С31—Н31В	0.9600
С6—Н6	0.9800	С31—Н31С	0.9600
С7—С8	1.522 (6)	C33—C34	1.479 (7)
С7—Н7	0.9800	С33—Н33А	0.9600
C8—C15	1.529 (6)	С33—Н33В	0.9600
C8—C14	1.552 (6)	С33—Н33С	0.9600
C8—C9	1.553 (6)	C35—C40	1.376 (7)
C9—C11	1.557 (6)	C35—C36	1.381 (8)
C9—C10	1.564 (6)	С35—Н35	0.9300
С9—Н9	0.9800	C36—C37	1.341 (10)
C10—C20	1.576 (6)	С36—Н36	0.9300
C11—C12	1.538 (7)	C37—C38	1.377 (9)
C11—H11	0.9800	С37—Н37	0.9300
C12—C16	1.501 (6)	C38—C39	1.350 (7)
C12—C13	1.507 (6)	С38—Н38	0.9300
С12—Н12	0.9800	C39—C40	1.378 (7)
C13—C14	1.544 (6)	С39—Н39	0.9300
С13—Н13	0.9800	C40—C41	1.490 (7)
C6—N1—C20	103.7 (3)	H15A—C15—H15B	108.1
C6—N1—C21	120.4 (4)	C17—C16—C12	124.5 (5)
C20—N1—C21	118.7 (4)	C17—C16—C15	124.2 (4)
C23—O1A—C1	115.6 (4)	C12—C16—C15	111.1 (4)
C30—O2A—C2	117.4 (4)	С16—С17—Н17А	120.0
C32—O3A—C3	116.8 (5)	С16—С17—Н17В	120.0
С7—О7—Н7А	109.5	H17A—C17—H17B	120.0
C34—O11A—C11	114.4 (3)	C4—C18—H18A	109.5
C41—O13A—C13	117.6 (4)	C4C18H18B	109.5
O1A—C1—C10	106.4 (3)	H18A-C18-H18B	109.5
O1A—C1—C2	105.1 (3)	C4—C18—H18C	109.5
C10—C1—C2	115.4 (4)	H18A—C18—H18C	109.5
O1A—C1—H1	109.9	H18B—C18—H18C	109.5
С10—С1—Н1	109.9	O19—C19—C4	122.2 (5)
C2—C1—H1	109.9	O19—C19—H19	118.9
O2A—C2—C3	112.5 (4)	C4—C19—H19	118.9
O2A—C2—C1	107.2 (3)	N1—C20—C14	109.1 (3)
C3—C2—C1	110.8 (4)	N1—C20—C10	103.3 (4)

O2A—C2—H2	108.7	C14—C20—C10	104.6 (3)
С3—С2—Н2	108.7	N1—C20—H20	113.0
C1—C2—H2	108.7	С14—С20—Н20	113.0
O3A—C3—C2	109.2 (3)	С10—С20—Н20	113.0
O3A—C3—C4	107.5 (3)	N1—C21—H21A	109.5
C2—C3—C4	116.5 (4)	N1—C21—H21B	109.5
O3A—C3—H3	107.8	H21A—C21—H21B	109.5
С2—С3—Н3	107.8	N1—C21—H21C	109.5
С4—С3—Н3	107.8	H21A—C21—H21C	109.5
C3—C4—C19	109.8 (4)	H21B—C21—H21C	109.5
C3—C4—C18	108.6 (4)	C23—C22—H22A	109.5
C19—C4—C18	107.2 (4)	С23—С22—Н22В	109.5
C3—C4—C5	110.8 (4)	H22A—C22—H22B	109.5
C19—C4—C5	111.7 (4)	С23—С22—Н22С	109.5
C18—C4—C5	108.6 (4)	H22A—C22—H22C	109.5
C6—C5—C4	108.5 (4)	H22B—C22—H22C	109.5
C6—C5—C10	99.2 (3)	O1B-C23-O1A	122.5 (4)
C4—C5—C10	116.7 (4)	O1B—C23—C22	125.1 (5)
С6—С5—Н5	110.6	O1A—C23—C22	112.4 (5)
C4—C5—H5	110.6	C29—C24—C25	119.3 (7)
С10—С5—Н5	110.6	C29—C24—H24	120.3
N1—C6—C7	113.4 (4)	C25—C24—H24	120.3
N1—C6—C5	97.1 (3)	C26—C25—C24	120.8 (7)
C7—C6—C5	111.9 (4)	C26—C25—H25	119.6
N1—C6—H6	111.2	C24—C25—H25	119.6
С7—С6—Н6	111.2	C27—C26—C25	120.5 (7)
С5—С6—Н6	111.2	С27—С26—Н26	119.7
O7—C7—C8	107.4 (4)	С25—С26—Н26	119.7
O7—C7—C6	112.0 (4)	C26—C27—C28	119.5 (7)
C8—C7—C6	110.6 (3)	С26—С27—Н27	120.2
O7—C7—H7	108.9	С28—С27—Н27	120.2
С8—С7—Н7	108.9	C29—C28—C27	120.7 (6)
С6—С7—Н7	108.9	С29—С28—Н28	119.6
C7—C8—C15	110.7 (3)	C27—C28—H28	119.6
C7—C8—C14	109.6 (3)	C28—C29—C24	119.1 (5)
C15—C8—C14	111.7 (4)	C28—C29—C30	123.3 (5)
C7—C8—C9	110.5 (3)	C24—C29—C30	117.6 (6)
C15—C8—C9	115.1 (4)	O2B—C30—O2A	122.2 (5)
C14—C8—C9	98.8 (3)	O2B—C30—C29	125.8 (5)
C8—C9—C11	105.6 (3)	O2A—C30—C29	112.0 (5)
C8—C9—C10	100.8 (3)	С32—С31—Н31А	109.5
C11—C9—C10	123.0 (3)	C32—C31—H31B	109.5
C8—C9—H9	108.8	H31A—C31—H31B	109.5
С11—С9—Н9	108.8	C32—C31—H31C	109.5
С10—С9—Н9	108.8	H31A—C31—H31C	109.5
C1—C10—C9	115.8 (3)	H31B-C31-H31C	109.5
CI-CI0-C5	113.2 (3)	$O_{3B} = C_{32} = O_{3A}$	122.7 (6)
$C_{2} = C_{10} = C_{20}$	105.5 (3)	$U_{3B} = U_{32} = U_{31}$	127.8 (7)
C1—C10—C20	114.9 (4)	U3A—U32—U31	109.4 (7)

C9—C10—C20	104.4 (3)	C34—C33—H33A	109.5			
C5-C10-C20	101.8 (3)	C34—C33—H33B	109.5			
O11A-C11-C12	111.4 (4)	H33A—C33—H33B	109.5			
O11A—C11—C9	115.0 (3)	C34—C33—H33C	109.5			
C12—C11—C9	110.7 (4)	H33A—C33—H33C	109.5			
011A—C11—H11	106.4	H33B—C33—H33C	109.5			
C12—C11—H11	106.4	O11B-C34-O11A	122.8 (4)			
С9—С11—Н11	106.4	O11B—C34—C33	124.4 (5)			
C16—C12—C13	109.3 (4)	O11A—C34—C33	112.8 (5)			
C16—C12—C11	105.6 (4)	C40—C35—C36	121.5 (6)			
C13—C12—C11	110.9 (3)	C40—C35—H35	119.3			
C16—C12—H12	110.3	С36—С35—Н35	119.3			
C13—C12—H12	110.3	C37—C36—C35	119.0 (6)			
C11—C12—H12	110.3	С37—С36—Н36	120.5			
O13A—C13—C12	106.7 (4)	С35—С36—Н36	120.5			
O13A—C13—C14	111.9 (3)	C36—C37—C38	120.9 (6)			
C12-C13-C14	110.1 (4)	С36—С37—Н37	119.6			
O13A—C13—H13	109.3	С38—С37—Н37	119.6			
C12—C13—H13	109.3	C39—C38—C37	119.6 (7)			
C14—C13—H13	109.3	С39—С38—Н38	120.2			
C13—C14—C20	115.1 (3)	С37—С38—Н38	120.2			
C13—C14—C8	109.5 (3)	C38—C39—C40	121.5 (6)			
C20—C14—C8	100.1 (3)	С38—С39—Н39	119.3			
C13—C14—H14	110.6	С40—С39—Н39	119.3			
C20—C14—H14	110.6	C35—C40—C39	117.5 (5)			
C8—C14—H14	110.6	C35—C40—C41	119.9 (5)			
C16—C15—C8	110.4 (3)	C39—C40—C41	122.6 (5)			
C16—C15—H15A	109.6	O13B—C41—O13A	123.0 (4)			
C8—C15—H15A	109.6	O13B—C41—C40	125.5 (5)			
C16—C15—H15B	109.6	O13A—C41—C40	111.4 (4)			
C8—C15—H15B	109.6					
Hydrogen-bond geometry (Å, °)						
	/					

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A…O19 ⁱ	0.82	1.94	2.743 (5)	167
Symmetry codes: (i) $-x$, y , $-z+2$.				

